引用本文:[点击复制]
[点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 628次   下载 0 本文二维码信息
码上扫一扫!
风景园林平面图生成设计数据集增强 方法研究
陈然,罗晓敏,凌霄,赵晶*
0
作者简介:陈 然 1996年生/男/广东汕头人/北京林业大学园林学院在读博士研究 生/研究方向为设计智能化和深度学习(北京 100083)
摘要:
平面图生成是生成设计研究中的核心部分,然而数 据集的匮乏制约了生成设计研究的发展。为了低成本地解决 数据瓶颈问题,提出并验证了一个基于算法驱动的数据增强框 架。首先,结合深度学习和生成设计任务特征,提出外环境切 割、分层训练和曲线优化3个关键步骤,基于此构建了一套完 整有效的风景园林平面图数据增强框架。其次,基于测试集对 框架各个部分进行消融实验,验证该框架的有效性。最后,应 用该框架生成一套高质量的数据集,并将数据应用于风景园林 生成设计的“图像分割”“布局生成”“平面渲染”三大主流 任务,在实践中验证该框架的有效性。
关键词:  风景园林  深度学习  数据增强  平面生成设计  语义分割
DOI:10.19775/j.cla.2024.09.0036
投稿时间:2023-04-27修订日期:2023-11-08
基金项目:国家自然科学基金项目(52208041)
Research on Enhancement Methods for GeneratingDesign Datasets for Landscape Architecture Plans
CHEN Ran,LUO Xiaomin,LING Xiao,ZHAO Jing
Abstract:
Plane graph generation is a core part of generative design research, yet the lack of datasets constrains the development of generative design research. In order to solve the data bottleneck problem cost-effectively, this study proposes and validates an algorithm-driven data enhancement framework based on algorithms. Firstly, combining deep learning and generative design task characteristics, three key steps of outer environment cutting, hierarchical training, and curve optimization are proposed, based on which a complete and effective data enhancement framework for landscape plan drawings is constructed. Secondly, ablation experiments are conducted on each part of the framework based on the test set to verify the effectiveness of the framework. Finally, the framework is applied to generate a set of high-quality datasets, and the data are applied to the three main mainstream tasks of "image segmentation", "layout generation" and "planar rendering" in the design of landscape garden generation to verify the framework in practice.
Key words:  landscape architecture  deep learning  data enhancement  plane generation design  semantic segmentation

京公网安备 11010802028240号

用微信扫一扫

用微信扫一扫