引用本文:[点击复制]
[点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 1675次   下载 0 本文二维码信息
码上扫一扫!
基于LiDAR点云的景观空间“绿视率” 量化分析方法研究
成实,张冠亭,张潇涵,刘奕秋
0
作者简介:
摘要:
LiDAR点云在景观空间定量研究中具有重要作用, 而目前对其运用多局限于景观空间的信息采集,为探讨如何基 于LiDAR点云数据展开景观空间的相关形态量化分析,选取 了过往研究中多局限于二维图像分析的“绿视率”指标进行具 体分析讨论,将其量化分析方法归为空间数据采集、处理、建 模、分析4个主要环节。以南京河西某住区绿地为研究案例, 选取其中4处具有典型差异的空间节点对基于LiDAR点云数据 的“绿视率”分析方法加以运用,发现该方法具有“分析高效 性”“数据全面性”“结果准确性”3个方面的突出优势及运 用价值,对后续风景园林领域研究与实践的高质量、精细化发 展具有积极作用。
关键词:  风景园林  三维点云数据  绿视率  空间量化  分 析方法
DOI:
基金项目:
Research on the Quantitative Analysis Method of "Green Viewing Ratio" of Landscape Spatial Form Based on Three-dimensional LiDAR Point Cloud Data
CHENG Shi,ZHANG Guanting,ZHANG Xiaohan,LIU Yiqiu
Abstract:
LiDAR point cloud is usually used for spatial information collection, but it also plays an essential role in the quantitative research of landscape space. In this paper, the Green Viewing Ratio (GVR) index, often calculated by 2-dimension images in previous studies, is selected for LiDAR point cloud-based analysis and comparison with traditional methods. This paper develops a quantitative method for calculating GVR by using the LiDAR point cloud, which contains four main steps: spatial data collection, processing, modeling, and analysis. And the proposed method is performed on four typical spatial spots in a residential green space within Hexi District, Nanjing. The result shows that the proposed method has outstanding advantages and application values in three aspects: efficiency, comprehensiveness and accuracy. Besides, this paper also reveals that the proposed method has potential benefits for high-quality and refined development in future landscape research and practice.
Key words:  landscape architecture  3D point cloud data  green viewing ratio  spatial quantification  analysis method

京公网安备 11010802028240号

用微信扫一扫

用微信扫一扫